AP Statistics
Cumulative AP Exam Study Guide

Statistics – the science of collecting, analyzing, and drawing conclusions from data.

 Descriptive – methods of organizing and summarizing statistics

 Inferential – making generalizations from a sample to the population.

Population – an entire collection of individuals or objects.

Sample – A subset of the population selected for study.

Variable – any characteristic whose value changes.

Data – observations on single or multi-variables.

Variables

 Categorical – (Qualitative) – basic characteristics

 Numerical – (Quantitative) – measurements or observations of numerical data.

 Discrete – listable sets (counts)

 Continuous – any value over an interval of values (measurements)

 Univariate – one variable

 Bivariate – two variables

 Multivariate – many variables

Distributions

 Symmetrical – data on which both sides are fairly the same shape and size. “Bell Curve”

 Uniform – every class has an equal frequency (number) “a rectangle”

 Skewed – one side (tail) is longer than the other side. The skewness is in the direction that the tail points (left or right)

 Bimodal – data of two or more classes have large frequencies separated by another class between them. “double hump camel”

How to describe numerical graphs - S.O.C.S.

 Shape – overall type (symmetrical, skewed right left, uniform, or bimodal)

 Outliers – gaps, clusters, etc.

 Center – middle of the data (mean, median, and mode)

 Spread – refers to variability (range, standard deviation, and IQR)

 *Everything must be in context to the data and situation of the graph.

 *When comparing two distributions – MUST use comparative language!

Parameter – value of a population (typically unknown)

Statistic – a calculated value about a population from a sample(s).

Measures of Center

 Median – the middle point of the data (50th percentile) when the data is in numerical order. If two values are present, then average them together.

 Mean – μ is for a population (parameter) and x is for a sample (statistic).

 Mode – occurs the most in the data. There can be more then one mode, or no mode at all if all data points occur once.

Variability – allows statisticians to distinguish between usual and unusual occurrences.
Measures of Spread (variability)
- **Range** – a single value – (Max – Min)
- **IQR** – interquartile range – (Q3 – Q1)
- Standard deviation – σ for population (parameter) & s for sample (statistic) – measures the typical or average deviation of observations from the mean – sample standard deviation is divided by $df = n-1$
 Sum of the deviations from the mean is always zero!
- **Variance** – standard deviation squared

Resistant – not affected by outliers.

<table>
<thead>
<tr>
<th>Resistant</th>
<th>Non-Resistant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>Mean</td>
</tr>
<tr>
<td>IQR</td>
<td>Range</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td></td>
</tr>
<tr>
<td>Correlation Coefficient (r)</td>
<td></td>
</tr>
<tr>
<td>Least Squares Regression Line (LSRL)</td>
<td></td>
</tr>
<tr>
<td>Coefficient of Determination (r^2)</td>
<td></td>
</tr>
</tbody>
</table>

Comparison of mean & median based on graph type
- Symmetrical – mean and the median are the same value.
- Skewed Right – mean is a larger value than the median.
- Skewed Left – the mean is smaller than the median.
 The mean is always pulled in the direction of the skew away from the median.

Trimmed Mean – use a % to take observations away from the top and bottom of the ordered data. This possibly eliminates outliers.

Linear Transformations of random variables
- $\mu_{a+bx} = a + b\mu_x$ The mean is changed by both addition (subtract) & multiplication (division).
- $\sigma_{a+bx} = |b|\sigma_x$ The standard deviation is changed by multiplication (division) ONLY.

Combination of two (or more) random variables
- $\mu_{x+y} = \mu_x \pm \mu_y$ Just add or subtract the two (or more) means
- $\sigma_{x+y}^2 = \sigma_x^2 + \sigma_y^2$ Always add the variances – X & Y MUST be independent

Z –Score – is a standardized score. This tells you how many standard deviations from the mean an observation is. It creates a standard normal curve consisting of z-scores with $\mu = 0$ & $\sigma = 1$.

$$z = \frac{x - \mu}{\sigma}$$

Normal Curve – is a bell shaped and symmetrical curve.
- As σ increases the curve flattens.
- As σ decreases the curve thins.

Empirical Rule (68-95-99.7) measures 1σ, 2σ, and 3σ on normal curves from a center of μ.
- 68% of the population is between -1σ and 1σ
- 95% of the population is between -2σ and 2σ
- 99.7% of the population is between -3σ and 3σ

Boxplots – are for medium or large numerical data. It does not contain original observations. Always use modified boxplots where the fences are 1.5 IQRs from the ends of the box (Q1 & Q3). Points outside the fence are considered outliers. Whiskers extend to the smallest & largest observations within the fences.
5-Number Summary – Minimum, Q1 (1st Quartile – 25th Percentile), Median, Q3 (3rd Quartile – 75th Percentile), Maximum

Probability Rules
Sample Space – is collection of all outcomes.
Event – any sample of outcomes.
Complement – all outcomes not in the event.
Union – A or B, all the outcomes in both circles. A ∪ B
Intersection – A and B, happening in the middle of A and B. A ∩ B
Mutually Exclusive (Disjoint) – A and B have no intersection. They cannot happen at the same time.
Independent – if knowing one event does not change the outcome of another.
Experimental Probability – is the number of success from an experiment divided by the total amount from the experiment.
Law of Large Numbers – as an experiment is repeated the experimental probability gets closer and closer to the true (theoretical) probability. The difference between the two probabilities will approach “0”.

Rules
(1) All values are 0 < P < 1.
(2) Probability of sample space is 1.
(3) Complement = P + (1 - P) = 1
(4) Addition P(A or B) = P(A) + P(B) – P(A & B)
(5) Multiplication P(A & B) = P(A) · P(B) if a & B are independent
(6) P (at least 1 or more) = 1 – P (none)
(7) Conditional Probability – takes into account a certain condition. \[P(A \mid B) = \frac{P(A \& B)}{P(B)} = \frac{P(both)}{P(given)} \]

Correlation Coefficient – (r) – is a quantitative assessment of the strength and direction of a linear relationship. (use \(\rho \) (rho) for population parameter)
Values – [-1, 1] 0 – no correlation, (0, ±0.5) – weak, [±0.5, ±0.8) – moderate, [±0.8, ±1] - strong

Least Squares Regression Line (LSRL) – is a line of mathematical best fit. Minimizes the deviations (residuals) from the line. Used with bivariate data.
\[\hat{y} = a + bx \]
x is independent, the explanatory variable & y is dependent, the response variable

Residuals (error) – is vertical difference of a point from the LSRL. All residuals sum up to “0”.
Residual = y – \(\hat{y} \)

Residual Plot – a scatterplot of (x (or \(\hat{y} \)), residual). No pattern indicates a linear relationship.

Coefficient of Determination \((r^2) \) - gives the proportion of variation in y (response) that is explained by the relationship of (x, y). Never use the adjusted \(r^2 \).

Interpretations: must be in context!
Slope (b) – For unit increase in x, then the y variable will increase/decrease slope amount.
Correlation coefficient (r) – There is a strength, direction, linear association between x & y.
Coefficient of determination \((r^2) \) - Approximately \(r^2 \)% of the variation in y can be explained by the LSRL of x any y.

Extrapolation – LSRL cannot be used to find values outside of the range of the original data.

Influential Points – are points that if removed significantly change the LSRL.

Outliers – are points with large residuals.
Census – a complete count of the population. Why not to use a census?
- Expensive
- Impossible to do
- If destructive sampling you get extinction

Sampling Frame – is a list of everyone in the population.

Sampling Design – refers to the method used to choose a sample.
 SRS (Simple Random Sample) – one chooses so that each unit has an equal chance and every set of units has an equal chance of being selected.
 Advantages: easy and unbiased
 Disadvantages: large σ2 and must know population.
 Stratified – divide the population into homogeneous groups called strata, then SRS each strata.
 Advantages: more precise than an SRS and cost reduced if strata already available.
 Disadvantages: difficult to divide into groups, more complex formulas & must know population.
 Systematic – use a systematic approach (every 50th) after choosing randomly where to begin.
 Advantages: unbiased, the sample is evenly distributed across population & don’t need to know population.
 Disadvantages: a large σ2 and can be confounded by trends.
 Cluster Sample – based on location. Select a random location and sample ALL at that location.
 Advantages: cost is reduced, is unbiased& don’t need to know population.
 Disadvantages: May not be representative of population and has complex formulas.

Random Digit Table – each entry is equally likely and each digit is independent of the rest.

Random # Generator – Calculator or computer program

Bias – Error – favors a certain outcome, has to do with center of sampling distributions – if centered over true parameter then considered unbiased

Sources of Bias
- Voluntary Response – people choose themselves to participate.
- Convenience Sampling – ask people who are easy, friendly, or comfortable asking.
- Undercoverage – some group(s) are left out of the selection process.
- Non-response – someone cannot or does not want to be contacted or participate.
- Response – false answers – can be caused by a variety of things
- Wording of the Questions – leading questions.

Experimental Design
 Observational Study – observe outcomes with out giving a treatment.
 Experiment – actively imposes a treatment on the subjects.
 Experimental Unit – single individual or object that receives a treatment.
 Factor – is the explanatory variable, what is being tested
 Level – a specific value for the factor.
 Response Variable – what you are measuring with the experiment.
 Treatment – experimental condition applied to each unit.
 Control Group – a group used to compare the factor to for effectiveness – does NOT have to be placebo
 Placebo – a treatment with no active ingredients (provides control).
 Blinding – a method used so that the subjects are unaware of the treatment (who gets a placebo or the real treatment).
 Double Blinding – neither the subjects nor the evaluators know which treatment is being given.

Principles
 Control – keep all extraneous variables (not being tested) constant
 Replication – uses many subjects to quantify the natural variation in the response.
 Randomization – uses chance to assign the subjects to the treatments.
The only way to show cause and effect is with a **well designed, well controlled** experiment.

Experimental Designs

- **Completely Randomized** – all units are allocated to all of the treatments randomly
- **Randomized Block** – units are blocked and then randomly assigned in each block – reduces variation
- **Matched Pairs** – are matched up units by characteristics and then randomly assigned. Once a pair receives a certain treatment, then the other pair automatically receives the second treatment. **OR** individuals do both treatments in random order (before/after or pretest/post-test). Assignment is dependent
- **Confounding Variables** – are where the effect of the variable on the response cannot be separated from the effects of the factor being tested – happens in observational studies – when you use random assignment to treatments you do NOT have confounding variables!

Randomization – reduces bias by spreading extraneous variables to all groups in the experiment.

Blocking – helps reduce variability. Another way to reduce variability is to increase sample size.

Random Variable – a numerical value that depends on the outcome of an experiment.

- **Discrete** – a count of a random variable
- **Continuous** – a measure of a random variable

Discrete Probability Distributions - gives values & probabilities associated with each possible x.

\[\mu_x = \sum x_i p(x_i) \]
\[\sigma_x = \sqrt{\sum (x_i - \mu_x)^2 p(x_i)} \]

Calculator Shortcut – 1 VARSTAT L1,L2

Fair Game – a fair game is one in which all pay-ins equal all pay-outs.

Special discrete distributions:

Binomial Distributions

- Properties - two mutually exclusive outcomes, fixed number of trials (n), each trial is independent, the probability (p) of success is the same for all trials,
- Random variable - is the number of successes out of a fixed # of trials. Starts at X = 0 and is finite.

\[\mu_x = np \quad \sigma_x = \sqrt{npq} \]

Calculator:

- binomialpdf (n, p, x) = single outcome P(X = x)
- binomialcdf (n, p, x) = cumulative outcome P(X < x)
- 1 - binomialcdf (n, p, (x -1)) = cumulative outcome P(X > x)

Geometric Distributions

- Properties - two mutually exclusive outcomes, each trial is independent, probability (p) of success is the same for all trials. (NOT a fixed number of trials)
- Random Variable – when the FIRST success occurs. Starts at 1 and is \(\infty \).

Calculator:

- geometricpdf (p, a) = single outcome P(X = a)
- geometriccdf (p, a) = cumulative outcomes P(X < a)
- 1 - geometriccdf (p, (a -1)) = cumulative outcome P(X > a)

Continuous Random Variable - numerical values that fall within a range or interval (measurements), use density curves where the area under the curve always = 1. To find probabilities, find area under the curve

Uniform Distributions - uniformly (evenly) distributed, shape of a rectangle

Normal Distributions - symmetrical, unimodal, bell shaped curves defined by the parameters \(\mu \) & \(\sigma \)

Calculator:

- Normalpdf – used for graphing only
- Normalcdf(lower bound, upper bound, \(\mu \), \(\sigma \)) – finds probability
- InvNorm(p) – z-score OR InvNorm(p, \(\mu \), \(\sigma \)) – gives x-value

To assess Normality - Use graphs – dotplots, boxplots, histograms, or normal probability plot.

Distribution – is all of the values of a random variable.

Sampling Distribution – of a statistic is the distribution of all possible values of all possible samples. Use normalcdf to calculate probabilities – be sure to use correct SD
\[\mu_{\bar{x}} = \mu_x \]
\[\sigma_{\bar{x}} = \frac{\sigma_x}{\sqrt{n}} \]
(standard deviation of the sample means)

\[\mu_p = p \]
\[\sigma_p = \sqrt{\frac{pq}{n}} \]
(standard deviation of the sample proportions)

\[\mu_{\bar{x}_1 - \bar{x}_2} = \mu_{\bar{x}_1} - \mu_{\bar{x}_2} \]
\[\sigma_{\bar{x}_1 - \bar{x}_2} = \sqrt{\frac{\sigma^2_{x_1}}{n_1} + \frac{\sigma^2_{x_2}}{n_2}} \]
(standard deviation of the difference in sample means)

\[\mu_{\hat{p}_1 - \hat{p}_2} = p_1 - p_2 \]
\[\sigma_{\hat{p}_1 - \hat{p}_2} = \sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}} \]
(standard deviation of the difference in sample proportions)

\[\mu_b = \beta \]
\[s_b \] (do not need to find, usually given in computer printout)

(standard error of the slopes of the LSRLs)

Standard error – estimate of the standard deviation of the statistic

Central Limit Theorem – when \(n \) is sufficiently large (\(n > 30 \)) the sampling distribution is approximately normal even if the population distribution is not normal.

Confidence Intervals

Point Estimate – uses a single statistic based on sample data, this is the simplest approach.

Confidence Intervals – used to estimate the unknown population parameter.

Margin of Error – the smaller the margin of error, the more precise our estimate

Steps:
- Assumptions – see table below
- Calculations – C.I. = statistic ± critical value (standard deviation of the statistic)
- Conclusion – Write your statement in context.

We are \([x] \)% confident that the true \([\text{parameter}]\) of \([\text{context}]\) is between \([a]\) and \([b]\).

What makes the margin of error smaller
- make critical value smaller (lower confidence level).
- get a sample with a smaller \(s \).
- make \(n \) larger.

T distributions compared to standard normal curve
- centered around 0
- more spread out and shorter
- more area under the tails.
- when you increase \(n \), t-curves become more normal.
- can be no outliers in the sample data
- Degrees of Freedom = \(n - 1 \)

Robust – if the assumption of normality is not met, the confidence level or p-value does not change much – this is true of t-distributions because there is more area in the tails.
Hypothesis Tests
Hypothesis Testing – tells us if a value occurs by random chance or not. If it is unlikely to occur by random chance then it is statistically significant.

Null Hypothesis – H₀ is the statement being tested. Null hypothesis should be “no effect”, “no difference”, or “no relationship”

Alternate Hypothesis – Hₐ is the statement suspected of being true.

P-Value – assuming the null is true, the probability of obtaining the observed result or more extreme

Level of Significance – α is the amount of evidence necessary before rejecting the null hypothesis.

Steps:
Assumptions – see table below
Hypotheses - don’t forget to define parameter
Calculations – find z or t test statistic & p-value
Conclusion – Write your statement in context.
Since the p-value is < (>) α, I reject (fail to reject) the Ho. There is (is not) sufficient evidence to suggest that [Hₐ].

Type I and II Errors and Power
Type I Error – is when one rejects H₀ when H₀ is actually true. (probability is α)
Type II Error – is when you fail to reject H₀, and H₀ is actually false. (probability is β)

α and β are inversely related. Consequences are the results of making a Type I or Type II error. Every decision has the possibility of making an error.

The Power of a Test – is the probability that the test will reject the null hypothesis when the null hypothesis is false assuming the null is true. Power = 1 – β

<table>
<thead>
<tr>
<th>If you increase</th>
<th>Type I error</th>
<th>Type II error</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Increases</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>n</td>
<td>Same</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
<tr>
<td>(μ₀ – μₐ)</td>
<td>Same</td>
<td>Decreases</td>
<td>Increases</td>
</tr>
</tbody>
</table>

χ² Test – is used to test counts of categorical data.

Types
- Goodness of Fit (univariate)
- Independence (bivariate)
- Homogeneity (univariate 2 (or more) samples)

χ² distribution – All curves are skewed right, every df has a different curve, and as the degrees of freedom increase the χ² curve becomes more normal.

Goodness of Fit – is for univariate categorical data from a single sample. Does the observed count “fit” what we expect. Must use list to perform, df = number of the categories – 1, use χ²cdf(χ², ∞, df) to calculate p-value

Independence – bivariate categorical data from one sample. Are the two variables independent or dependent? Use matrices to calculate

Homogeneity - single categorical variable from 2 (or more) samples. Are distributions homogeneous? Use matrices to calculate

For both χ² tests of independence & homogeneity:

Expected counts = \(\frac{(row \ total)(column \ total)}{grand \ total} \) & df = (r – 1)(c – 1)
Regression Model:
- X & Y have a linear relationship where the true LSRL is μ\(y = \alpha + \beta x\)
- The responses (y) are normally distributed for a given x-value.
- The standard deviation of the responses (σ\(y\)) is the same for all values of x.
 - S is the estimate for σ\(y\)

Confidence Interval \(b \pm t * s_p\)

Hypothesis Testing \(t = \frac{b - \beta}{s_h}\)

Assumptions:

<table>
<thead>
<tr>
<th>Proportions</th>
<th>Means</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>(z) - procedures</td>
<td>(t) - procedures</td>
<td>(\chi^2) - procedures</td>
</tr>
<tr>
<td>One sample:</td>
<td>One SRS from population</td>
<td>All types:</td>
</tr>
<tr>
<td>• SRS from population</td>
<td>• Distribution is approximately normal</td>
<td>• Reasonably random sample(s)</td>
</tr>
<tr>
<td>• Can be approximated by normal distribution if (n(p) & n(1-p) > 10)</td>
<td>o Given</td>
<td>• All expected counts > 5</td>
</tr>
<tr>
<td>• Population size is at least 10n</td>
<td>o Large sample size</td>
<td>o Must show expected counts</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Two samples:</th>
<th>Matched pairs:</th>
<th>Bivariate Data:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 2 independent SRS’s from populations (or randomly assigned treatments)</td>
<td>• SRS from population</td>
<td>t – procedures on slope</td>
</tr>
<tr>
<td>• Can be approximated by normal distribution if (n_1(p_1), n_1(1-p_1), n_2p_2, & n_2(1-p_2) > 10)</td>
<td>• Distribution of differences is approximately normal</td>
<td>• SRS from population</td>
</tr>
<tr>
<td>• Population sizes are at least 10n</td>
<td>- Given</td>
<td>• There is linear relationship between x & y.</td>
</tr>
<tr>
<td></td>
<td>- Large sample size</td>
<td>• Residual plot has no pattern.</td>
</tr>
<tr>
<td></td>
<td>- Graph of differences is approximately symmetrical and unimodal with no outliers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>